If you have any query feel free to chat us!
Happy Coding! Happy Learning!
In Matplotlib, you can create a bubble graph (also known as a bubble chart) and a pie chart to visualize data. Both of these charts are useful for different types of data representation. Here's how you can create a bubble graph and a pie chart using Matplotlib:
Bubble Graph: A bubble graph displays data points as circles, where the size of each circle (bubble) represents a third dimension of the data.
In this example, the plt.scatter()
function is used to create the bubble graph. The s
parameter allows you to specify the sizes of the bubbles, and the c
parameter sets the color of the bubbles.
Pie Chart: A pie chart displays data as slices of a circle, where each slice represents a portion of the whole.
In this example, the plt.pie()
function is used to create the pie chart. The labels
parameter sets the labels for each slice, and the autopct
parameter adds percentage labels to each slice. The startangle
parameter rotates the starting position of the chart.
Both bubble graphs and pie charts can be customized further by adjusting colors, labels, legends, and other visual elements to suit your specific data and visualization requirements.
Matplotlib is a versatile library that provides a wide range of charting options, making it a powerful tool for data visualization.
pythonCopy code
import matplotlib.pyplot as plt
# Sample data
categories = ['Category 1', 'Category 2', 'Category 3', 'Category 4']
sizes = [25, 30, 15, 30]
# Create a pie chart
plt.pie(sizes, labels=categories, autopct='%1.1f%%', startangle=90, colors=['red', 'green', 'blue', 'yellow'])
plt.axis('equal') # Equal aspect ratio ensures the pie chart is circular
plt.title('Pie Chart')
plt.show()
pythonCopy code
import matplotlib.pyplot as plt
# Sample data
x = [1, 2, 3, 4, 5]
y = [10, 15, 8, 20, 12]
sizes = [100, 200, 300, 400, 500]
# Create a bubble graph
plt.scatter(x, y, s=sizes, c='blue', alpha=0.5)
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.title('Bubble Graph')
plt.grid(True)
plt.show()
Comments: 0