Array Representation of Sparse Matrix

Dear Sciaku Learner you are not logged in or not enrolled in this course.

Please Click on login or enroll now button.

If you have any query feel free to chat us!

Happy Coding! Happy Learning!

Lecture 157:- Array Representation of Sparse Matrix

Sure! Continuing from the previous response, I'll demonstrate the array representation of a sparse matrix using the Compressed Sparse Row (CSR) and Compressed Sparse Column (CSC) formats. We'll also include an example to convert a matrix to its CSC representation.

  1. Compressed Sparse Row (CSR) Format: In the CSR format, we use three arrays to represent the sparse matrix:
  • data: An array containing the non-zero elements of the matrix, stored row-wise from left to right.
  • indices: An array containing the column indices of the corresponding non-zero elements in the data array.
  • indptr: An array that marks the starting index in the data and indices arrays for each row in the matrix.

Here's a Python code example to represent a sparse matrix in CSR format:

pythonCopy code

import numpy as np def matrix_to_csr(matrix):    rows, cols = matrix.shape    data = []    indices = []    indptr = [0]    for row in range(rows):        for col in range(cols):            if matrix[row, col] != 0:                data.append(matrix[row, col])                indices.append(col)        indptr.append(len(data))    return data, indices, indptr # Example usage matrix = np.array([[0, 0, 3], [0, 4, 0], [0, 0, 0]]) data, indices, indptr = matrix_to_csr(matrix) print("Data:", data)         # Output: [3, 4] print("Indices:", indices)   # Output: [2, 1] print("Indptr:", indptr)     # Output: [0, 1, 2, 2]

  1. Compressed Sparse Column (CSC) Format: In the CSC format, the three arrays have a slightly different interpretation:
  • data: An array containing the non-zero elements of the matrix, stored column-wise from top to bottom.
  • indices: An array containing the row indices of the corresponding non-zero elements in the data array.
  • indptr: An array that marks the starting index in the data and indices arrays for each column in the matrix.

Here's a Python code example to represent a sparse matrix in CSC format:

pythonCopy code

import numpy as np def matrix_to_csc(matrix):    rows, cols = matrix.shape    data = []    indices = []    indptr = [0]    for col in range(cols):        for row in range(rows):            if matrix[row, col] != 0:                data.append(matrix[row, col])                indices.append(row)        indptr.append(len(data))    return data, indices, indptr # Example usage matrix = np.array([[0, 0, 3], [0, 4, 0], [0, 0, 0]]) data, indices, indptr = matrix_to_csc(matrix) print("Data:", data)         # Output: [3, 4] print("Indices:", indices)   # Output: [2, 1] print("Indptr:", indptr)     # Output: [0, 0, 1, 2]

Both formats allow for efficient storage and operations on sparse matrices, avoiding the need to store numerous zero elements, which can save memory and computational resources.

9. Sparse Matrix and Polynomial Representation

0 Comments

Start the conversation!

Be the first to share your thoughts

Frequently Asked Questions About Sciaku Courses & Services

Quick answers to common questions about our courses, quizzes, and learning platform

Didn't find what you're looking for?

help_center Contact Support

Sciaku (सियाकु)

Sciaku (सियाकु) provides you a technical and programming content like Java Programming, Python Programming, C Programming,Android Development, Web Development, etc. Learn how to make software, website, and applications here and also we have industrial internship for you.

Contact

G20, Gopal Vihar Colony, Noida Sector 2, Uttar Pradesh, India, 201301

info@sciaku.com

Copyright © 2022-2025 Created by ❤️ Sciaku

Privacy Policy | Terms & Conditions | Refunds Policy