If you have any query feel free to chat us!
Happy Coding! Happy Learning!
Sure! Continuing from the previous response, I'll demonstrate the array representation of a sparse matrix using the Compressed Sparse Row (CSR) and Compressed Sparse Column (CSC) formats. We'll also include an example to convert a matrix to its CSC representation.
- Compressed Sparse Row (CSR) Format: In the CSR format, we use three arrays to represent the sparse matrix:
data
: An array containing the non-zero elements of the matrix, stored row-wise from left to right.indices
: An array containing the column indices of the corresponding non-zero elements in thedata
array.indptr
: An array that marks the starting index in thedata
andindices
arrays for each row in the matrix.Here's a Python code example to represent a sparse matrix in CSR format:
pythonCopy code
import numpy as np def matrix_to_csr(matrix): rows, cols = matrix.shape data = [] indices = [] indptr = [0] for row in range(rows): for col in range(cols): if matrix[row, col] != 0: data.append(matrix[row, col]) indices.append(col) indptr.append(len(data)) return data, indices, indptr # Example usage matrix = np.array([[0, 0, 3], [0, 4, 0], [0, 0, 0]]) data, indices, indptr = matrix_to_csr(matrix) print("Data:", data) # Output: [3, 4] print("Indices:", indices) # Output: [2, 1] print("Indptr:", indptr) # Output: [0, 1, 2, 2]
- Compressed Sparse Column (CSC) Format: In the CSC format, the three arrays have a slightly different interpretation:
data
: An array containing the non-zero elements of the matrix, stored column-wise from top to bottom.indices
: An array containing the row indices of the corresponding non-zero elements in thedata
array.indptr
: An array that marks the starting index in thedata
andindices
arrays for each column in the matrix.Here's a Python code example to represent a sparse matrix in CSC format:
pythonCopy code
import numpy as np def matrix_to_csc(matrix): rows, cols = matrix.shape data = [] indices = [] indptr = [0] for col in range(cols): for row in range(rows): if matrix[row, col] != 0: data.append(matrix[row, col]) indices.append(row) indptr.append(len(data)) return data, indices, indptr # Example usage matrix = np.array([[0, 0, 3], [0, 4, 0], [0, 0, 0]]) data, indices, indptr = matrix_to_csc(matrix) print("Data:", data) # Output: [3, 4] print("Indices:", indices) # Output: [2, 1] print("Indptr:", indptr) # Output: [0, 0, 1, 2]
Both formats allow for efficient storage and operations on sparse matrices, avoiding the need to store numerous zero elements, which can save memory and computational resources.
Start the conversation!
Be the first to share your thoughts
Quick answers to common questions about our courses, quizzes, and learning platform