If you have any query feel free to chat us!
Happy Coding! Happy Learning!
Here's a complete C++ implementation of a Binary Search Tree (BST) with functions to create and insert nodes, perform in-order traversal, and search for a specific key in the BST:
cppCopy code
#include <iostream> using namespace std; struct TreeNode { int val; TreeNode* left; TreeNode* right; TreeNode(int data) : val(data), left(nullptr), right(nullptr) {} }; class BST { private: TreeNode* root; // Private recursive function to insert a new node in the BST TreeNode* insertBST(TreeNode* root, int val) { if (root == nullptr) return new TreeNode(val); if (val < root->val) root->left = insertBST(root->left, val); else if (val > root->val) root->right = insertBST(root->right, val); return root; } // Private recursive function for in-order traversal void inOrderTraversal(TreeNode* root) { if (root == nullptr) return; inOrderTraversal(root->left); cout << root->val << " "; inOrderTraversal(root->right); } // Private recursive function to search for a key in the BST TreeNode* searchBST(TreeNode* root, int key) { if (root == nullptr || root->val == key) return root; if (key < root->val) return searchBST(root->left, key); else return searchBST(root->right, key); } public: BST() : root(nullptr) {} // Public function to insert a new node in the BST void insert(int val) { root = insertBST(root, val); } // Public function to perform in-order traversal of the BST void inOrder() { inOrderTraversal(root); cout << endl; } // Public function to search for a key in the BST bool search(int key) { return searchBST(root, key) != nullptr; } }; int main() { BST bst; // Insert nodes into the binary search tree bst.insert(5); bst.insert(3); bst.insert(8); bst.insert(2); bst.insert(4); bst.insert(7); bst.insert(9); // Perform an in-order traversal to see the sorted BST cout << "In-order Traversal of BST: "; bst.inOrder(); // Search for a key in the BST int key = 4; if (bst.search(key)) cout << "Key " << key << " found in the BST." << endl; else cout << "Key " << key << " not found in the BST." << endl; return 0; }
Output:
mathematicaCopy code
In-order Traversal of BST: 2 3 4 5 7 8 9 Key 4 found in the BST.
In this code, the
BST
class contains functions for inserting, performing in-order traversal, and searching in the BST. The BST is created and manipulated using the public functions of the class.
Start the conversation!
Be the first to share your thoughts
Quick answers to common questions about our courses, quizzes, and learning platform