If you have any query feel free to chat us!
Happy Coding! Happy Learning!
Creating a sparse matrix using a linked list is an efficient way to represent matrices that have a large number of zero elements. In this representation, only the non-zero elements are stored, which saves memory and allows faster access to elements. Here's a basic implementation of a sparse matrix using a linked list in Python:
Let's start by defining the data structures for the sparse matrix:
pythonCopy code
class Node: def __init__(self, row, col, value): self.row = row self.col = col self.value = value self.next_row = None self.next_col = None class SparseMatrix: def __init__(self, rows, cols): self.rows = rows self.cols = cols self.row_heads = [None] * rows self.col_heads = [None] * cols
Next, we can add methods to insert elements into the sparse matrix:
pythonCopy code
class SparseMatrix: # ... (previous code) def insert(self, row, col, value): if row < 0 or row >= self.rows or col < 0 or col >= self.cols: raise IndexError("Index out of range") new_node = Node(row, col, value) if not self.row_heads[row]: self.row_heads[row] = new_node else: current_row_node = self.row_heads[row] while current_row_node.next_row: current_row_node = current_row_node.next_row current_row_node.next_row = new_node if not self.col_heads[col]: self.col_heads[col] = new_node else: current_col_node = self.col_heads[col] while current_col_node.next_col: current_col_node = current_col_node.next_col current_col_node.next_col = new_node def get(self, row, col): if row < 0 or row >= self.rows or col < 0 or col >= self.cols: raise IndexError("Index out of range") current_node = self.row_heads[row] while current_node: if current_node.col == col: return current_node.value current_node = current_node.next_row return 0 # Return 0 for elements that are not explicitly set (i.e., zero)
With these basic methods, you can create and use a sparse matrix using a linked list. Here's an example of how you can use it:
pythonCopy code
# Create a 4x4 sparse matrix matrix = SparseMatrix(4, 4) # Insert some non-zero elements matrix.insert(0, 1, 5) matrix.insert(1, 0, 3) matrix.insert(2, 2, 7) matrix.insert(3, 3, 2) # Get elements from the sparse matrix print(matrix.get(0, 1)) # Output: 5 print(matrix.get(1, 0)) # Output: 3 print(matrix.get(2, 2)) # Output: 7 print(matrix.get(3, 3)) # Output: 2 print(matrix.get(1, 1)) # Output: 0 (implicitly a zero element)
Remember that the implementation can be further optimized and extended depending on your use case. This is a simple starting point to demonstrate the basic concept of a sparse matrix using a linked list.
Start the conversation!
Be the first to share your thoughts
Quick answers to common questions about our courses, quizzes, and learning platform