If you have any query feel free to chat us!
Happy Coding! Happy Learning!
Here's the C++ implementation of recursive insertion and deletion in a Binary Search Tree (BST):
cppCopy code
#include <iostream> using namespace std; struct TreeNode { int val; TreeNode* left; TreeNode* right; TreeNode(int data) : val(data), left(nullptr), right(nullptr) {} }; // Recursive function to insert a new node in the BST TreeNode* insertBST(TreeNode* root, int val) { if (root == nullptr) return new TreeNode(val); if (val < root->val) root->left = insertBST(root->left, val); else if (val > root->val) root->right = insertBST(root->right, val); return root; } // Recursive function to find the inorder successor of a given node TreeNode* findInOrderSuccessor(TreeNode* root) { TreeNode* curr = root->right; while (curr != nullptr && curr->left != nullptr) { curr = curr->left; } return curr; } // Recursive function to delete a node from the BST TreeNode* deleteBST(TreeNode* root, int key) { if (root == nullptr) return root; // If the key is smaller than the root's key, go to the left subtree if (key < root->val) root->left = deleteBST(root->left, key); // If the key is greater than the root's key, go to the right subtree else if (key > root->val) root->right = deleteBST(root->right, key); // If the key is the same as the root's key, this is the node to be deleted else { // Case 1: Node with only one child or no child if (root->left == nullptr) { TreeNode* temp = root->right; delete root; return temp; } else if (root->right == nullptr) { TreeNode* temp = root->left; delete root; return temp; } // Case 2: Node with two children // Get the inorder successor (smallest in the right subtree) TreeNode* successor = findInOrderSuccessor(root); // Copy the value of the inorder successor to this node root->val = successor->val; // Delete the inorder successor root->right = deleteBST(root->right, successor->val); } return root; } void inOrderTraversal(TreeNode* root) { if (root == nullptr) return; inOrderTraversal(root->left); cout << root->val << " "; inOrderTraversal(root->right); } int main() { // Create an empty binary search tree TreeNode* root = nullptr; // Insert nodes into the binary search tree root = insertBST(root, 5); root = insertBST(root, 3); root = insertBST(root, 8); root = insertBST(root, 2); root = insertBST(root, 4); root = insertBST(root, 7); root = insertBST(root, 9); // Perform an in-order traversal to see the sorted BST cout << "In-order Traversal of BST (Before Deletion): "; inOrderTraversal(root); cout << endl; // Delete node with value 3 from the BST int keyToDelete = 3; root = deleteBST(root, keyToDelete); // Perform an in-order traversal to see the updated BST cout << "In-order Traversal of BST (After Deletion): "; inOrderTraversal(root); cout << endl; // Remember to free the allocated memory after use to avoid memory leaks. // You can implement a function to delete the entire tree if needed. return 0; }
Output:
mathematicaCopy code
In-order Traversal of BST (Before Deletion): 2 3 4 5 7 8 9 In-order Traversal of BST (After Deletion): 2 4 5 7 8 9
In this code, the
insertBST
function is used to insert nodes recursively into the BST, and thedeleteBST
function is used to delete nodes recursively from the BST. The in-order traversal is performed to see the sorted order of the BST before and after the deletion of a node.
Start the conversation!
Be the first to share your thoughts
Quick answers to common questions about our courses, quizzes, and learning platform