If you have any query feel free to chat us!
Happy Coding! Happy Learning!
Below is a C++ implementation of Kruskal's algorithm to find the Minimum Spanning Tree (MST) of a connected, undirected graph with weighted edges using the disjoint-set data structure:
cppCopy code
#include <iostream> #include <vector> #include <algorithm> using namespace std; struct Edge { int src, dest, weight; }; // Comparator function for sorting edges based on weights in non-decreasing order bool compareEdges(const Edge& edge1, const Edge& edge2) { return edge1.weight < edge2.weight; } class DisjointSet { public: vector<int> parent, rank; DisjointSet(int size) { parent.resize(size); rank.resize(size, 0); for (int i = 0; i < size; ++i) { parent[i] = i; } } int find(int x) { if (parent[x] != x) { parent[x] = find(parent[x]); } return parent[x]; } void unionSets(int x, int y) { int rootX = find(x); int rootY = find(y); if (rootX != rootY) { if (rank[rootX] > rank[rootY]) { parent[rootY] = rootX; } else if (rank[rootX] < rank[rootY]) { parent[rootX] = rootY; } else { parent[rootY] = rootX; rank[rootX]++; } } } }; // Function to find the minimum cost spanning tree using Kruskal's algorithm vector<Edge> kruskalMST(vector<Edge>& edges, int vertices) { // Sort the edges in non-decreasing order of weights sort(edges.begin(), edges.end(), compareEdges); DisjointSet ds(vertices); vector<Edge> mst; for (Edge& edge : edges) { int srcParent = ds.find(edge.src); int destParent = ds.find(edge.dest); // Add the edge to the MST if it does not form a cycle if (srcParent != destParent) { mst.push_back(edge); ds.unionSets(srcParent, destParent); } } return mst; } int main() { int vertices, edges; cout << "Enter the number of vertices and edges: "; cin >> vertices >> edges; vector<Edge> graph(edges); cout << "Enter the edges (source, destination, weight):" << endl; for (int i = 0; i < edges; ++i) { cin >> graph[i].src >> graph[i].dest >> graph[i].weight; } vector<Edge> mst = kruskalMST(graph, vertices); // Print the MST cout << "Minimum Spanning Tree using Kruskal's Algorithm:\n"; for (Edge& edge : mst) { cout << "Edge: " << edge.src << " - " << edge.dest << " Weight: " << edge.weight << endl; } return 0; }
In this implementation, the graph is represented as a vector of edges, where each edge contains the source vertex, destination vertex, and weight. The
kruskalMST
function performs Kruskal's algorithm to find the MST. The MST is represented as a vector of edges. The algorithm uses a disjoint set data structure to efficiently check if adding an edge forms a cycle in the current MST. The MST is then printed with the source vertex, destination vertex, and weight of each edge.
Start the conversation!
Be the first to share your thoughts
Quick answers to common questions about our courses, quizzes, and learning platform