Kruskal's Minimum Cost Spanning Tree

Dear Sciaku Learner you are not logged in or not enrolled in this course.

Please Click on login or enroll now button.

If you have any query feel free to chat us!

Happy Coding! Happy Learning!

Lecture 379:- Kruskal's Minimum Cost Spanning Tree

Kruskal's algorithm is another greedy algorithm used to find the Minimum Spanning Tree (MST) of a connected, undirected graph with weighted edges. The main idea behind Kruskal's algorithm is to repeatedly add the shortest edge that does not form a cycle in the current MST.

The steps of Kruskal's algorithm are as follows:

  1. Sort all the edges of the graph in non-decreasing order of their weights.
  2. Initialize an empty MST and a disjoint set data structure to keep track of connected components.
  3. Start adding edges to the MST in non-decreasing order of weights.
    • If adding the edge does not form a cycle in the current MST (i.e., the two vertices of the edge are not in the same connected component), then add the edge to the MST.
    • If adding the edge forms a cycle, skip it and move to the next edge.
  4. Continue this process until all vertices are included in the MST.

Here's a C++ implementation of Kruskal's algorithm:

cppCopy code

#include <iostream> #include <vector> #include <algorithm> using namespace std; struct Edge {    int src, dest, weight; }; // Comparator function for sorting edges based on weights in non-decreasing order bool compareEdges(const Edge& edge1, const Edge& edge2) {    return edge1.weight < edge2.weight; } class DisjointSet { public:    vector<int> parent, rank;    DisjointSet(int size) {        parent.resize(size);        rank.resize(size, 0);        for (int i = 0; i < size; ++i) {            parent[i] = i;        }    }    int find(int x) {        if (parent[x] != x) {            parent[x] = find(parent[x]);        }        return parent[x];    }    void unionSets(int x, int y) {        int rootX = find(x);        int rootY = find(y);        if (rootX != rootY) {            if (rank[rootX] > rank[rootY]) {                parent[rootY] = rootX;            } else if (rank[rootX] < rank[rootY]) {                parent[rootX] = rootY;            } else {                parent[rootY] = rootX;                rank[rootX]++;            }        }    } }; // Function to find the minimum cost spanning tree using Kruskal's algorithm vector<Edge> kruskalMST(vector<Edge>& edges, int vertices) {    // Sort the edges in non-decreasing order of weights    sort(edges.begin(), edges.end(), compareEdges);    DisjointSet ds(vertices);    vector<Edge> mst;    for (Edge& edge : edges) {        int srcParent = ds.find(edge.src);        int destParent = ds.find(edge.dest);        // Add the edge to the MST if it does not form a cycle        if (srcParent != destParent) {            mst.push_back(edge);            ds.unionSets(srcParent, destParent);        }    }    return mst; } int main() {    int vertices, edges;    cout << "Enter the number of vertices and edges: ";    cin >> vertices >> edges;    vector<Edge> graph(edges);    cout << "Enter the edges (source, destination, weight):" << endl;    for (int i = 0; i < edges; ++i) {        cin >> graph[i].src >> graph[i].dest >> graph[i].weight;    }    vector<Edge> mst = kruskalMST(graph, vertices);    // Print the MST    cout << "Minimum Spanning Tree using Kruskal's Algorithm:\n";    for (Edge& edge : mst) {        cout << "Edge: " << edge.src << " - " << edge.dest << " Weight: " << edge.weight << endl;    }    return 0; }

In this implementation, the graph is represented as a vector of edges, where each edge contains the source vertex, destination vertex, and weight. The kruskalMST function performs Kruskal's algorithm to find the MST. The MST is represented as a vector of edges. The algorithm uses a disjoint set data structure to efficiently check if adding an edge forms a cycle in the current MST.

21. Graphs

0 Comments

Start the conversation!

Be the first to share your thoughts

Frequently Asked Questions About Sciaku Courses & Services

Quick answers to common questions about our courses, quizzes, and learning platform

Didn't find what you're looking for?

help_center Contact Support