If you have any query feel free to chat us!
Happy Coding! Happy Learning!
Certainly, let's continue enhancing our Binary Search Tree (BST) class by adding more functionalities such as finding the minimum and maximum values, checking if a given value exists in the tree, and calculating the height of the tree.
Here's the next part of the Binary Search Tree class:
pythonCopy code
class BinarySearchTree: def __init__(self): self.root = None def insert(self, data): self.root = self._insert_recursively(self.root, data) def _insert_recursively(self, node, data): if node is None: return TreeNode(data) if data < node.data: node.left = self._insert_recursively(node.left, data) elif data > node.data: node.right = self._insert_recursively(node.right, data) return node def search(self, data): return self._search_recursively(self.root, data) def _search_recursively(self, node, data): if node is None or node.data == data: return node if data < node.data: return self._search_recursively(node.left, data) else: return self._search_recursively(node.right, data) def delete(self, data): self.root = self._delete_recursively(self.root, data) # ... (previous code) def find_min(self): if self.root is None: return None current = self.root while current.left: current = current.left return current.data def find_max(self): if self.root is None: return None current = self.root while current.right: current = current.right return current.data def exists(self, data): return self._exists_recursively(self.root, data) def _exists_recursively(self, node, data): if node is None: return False if node.data == data: return True if data < node.data: return self._exists_recursively(node.left, data) else: return self._exists_recursively(node.right, data) def height(self): return self._height_recursively(self.root) def _height_recursively(self, node): if node is None: return -1 left_height = self._height_recursively(node.left) right_height = self._height_recursively(node.right) return max(left_height, right_height) + 1 # Example usage bst = BinarySearchTree() bst.insert(10) bst.insert(5) bst.insert(15) bst.insert(3) bst.insert(7) bst.insert(12) bst.insert(18) print("Min value:", bst.find_min()) print("Max value:", bst.find_max()) search_value = 7 print(f"Value {search_value} exists in the tree:", bst.exists(search_value)) print("Height of the tree:", bst.height())
In this part, we've added the following functionalities to the BinarySearchTree class:
Find Minimum and Maximum: The find_min and find_max methods find the minimum and maximum values in the binary search tree, respectively, by traversing left (for minimum) and right (for maximum) until reaching the leaf nodes.
Exists: The exists method checks whether a given value exists in the binary search tree or not.
Height: The height method calculates the height of the binary search tree by recursively calculating the maximum height of its left and right subtrees.
These additional functionalities enhance the capabilities of the Binary Search Tree class and allow you to perform common operations associated with binary search trees.
I bought this course, it worth it!
Hi i want to buy this course but you dont have master card payment method please let me know how i can buy it
Dear mk.info.work, Now we have all types of payment options. If you need to purchase just checkout our official website
Quick answers to common questions about our courses, quizzes, and learning platform
SCIAKU Team please upload 1st video of TREE please please please, please