If you have any query feel free to chat us!
Happy Coding! Happy Learning!
Certainly, let's continue exploring more advanced features of a tree class. In this example, we'll implement a Binary Search Tree (BST) class with additional functionalities like searching for a value, finding the height of the tree, and deleting a node.
pythonCopy code
class TreeNode: def __init__(self, data): self.data = data self.left = None self.right = None class BinarySearchTree: def __init__(self): self.root = None def insert(self, data): self.root = self._insert_recursively(self.root, data) def _insert_recursively(self, node, data): if node is None: return TreeNode(data) if data < node.data: node.left = self._insert_recursively(node.left, data) elif data > node.data: node.right = self._insert_recursively(node.right, data) return node def search(self, data): return self._search_recursively(self.root, data) def _search_recursively(self, node, data): if node is None: return False if data == node.data: return True elif data < node.data: return self._search_recursively(node.left, data) else: return self._search_recursively(node.right, data) def find_height(self): return self._find_height_recursively(self.root) def _find_height_recursively(self, node): if node is None: return -1 left_height = self._find_height_recursively(node.left) right_height = self._find_height_recursively(node.right) return max(left_height, right_height) + 1 def delete(self, data): self.root = self._delete_recursively(self.root, data) def _delete_recursively(self, node, data): if node is None: return node if data < node.data: node.left = self._delete_recursively(node.left, data) elif data > node.data: node.right = self._delete_recursively(node.right, data) else: if node.left is None: return node.right elif node.right is None: return node.left min_right_subtree = self._find_min(node.right) node.data = min_right_subtree.data node.right = self._delete_recursively(node.right, min_right_subtree.data) return node def _find_min(self, node): while node.left: node = node.left return node # Example usage bst = BinarySearchTree() bst.insert(10) bst.insert(5) bst.insert(15) bst.insert(3) bst.insert(7) bst.insert(12) bst.insert(18) print("Search for value 12:", bst.search(12)) print("Search for value 8:", bst.search(8)) print("Height of the tree:", bst.find_height()) print("In-order traversal after insertion:") bst.in_order_traversal(bst.root) print() bst.delete(10) print("In-order traversal after deletion:") bst.in_order_traversal(bst.root)
In this example, we've extended the BinarySearchTree class to include methods for searching, finding the height, and deleting nodes. The _search_recursively method searches for a value in the tree, while _find_height_recursively calculates the height of the tree using recursion. The _delete_recursively method handles the deletion of a node while maintaining the binary search tree property.
The delete method uses the _find_min method to find the minimum value in the right subtree when deleting a node with two children. This helps maintain the binary search tree structure.
This example showcases a more advanced implementation of a Binary Search Tree class, which includes common operations such as searching, finding the height, and deleting nodes. Binary Search Trees are a key concept in computer science and offer efficient searching and sorting capabilities.
I bought this course, it worth it!
Hi i want to buy this course but you dont have master card payment method please let me know how i can buy it
Dear mk.info.work, Now we have all types of payment options. If you need to purchase just checkout our official website
Quick answers to common questions about our courses, quizzes, and learning platform
SCIAKU Team please upload 1st video of TREE please please please, please